An open architecture for Al-native development

Ty Dunn, Co-founder of £ Continue

I
D ¥

| &

/A

Goals for this talk

1. Describe one of many possible open architectures for
Al-native development

2. Inspire you to think more deeply about the architecture
underlying the future of software development

AT
my

AN
JEl®

What is Continue?

eee
econen
o
oo

app.
blog

route.ts
t{ baseUrl } fron ‘app/sitenap’
t { getBlogposts } fron ‘app/blog/uti

async function GET() {
aliBlogs = await getBlogPosts(

- allslogs

retadata. publishedt

- new Date(b.metadata. publishedAt))

o

Hi
Claude 2. . evase @ Enter
Hello! 'd be happy to help you with your Nextjs project. What
specific components or features would you fike me to help you
builg? | can create anything from authentication flows to compl
dashboard Interfaces using the tech stack you mentioned (NextJs
k Form, Zod,

+v O Continue []

g Explore

at you need, and I'll start writing the code for

<Unk>s{baselr
(post.netadat;

sitemap.ts
gitig
0 package json
! popm-lockyam!
onfigs.
README.md

£ tsconfig json

ourune
TIMELINE

Rule
a
- Follow Next.Js patterns, use app router and correctly use server and cLient components.
T Uke Tatluind ¢S5 for styting.
~ Use Shaden UL far comporente:
Z Use Tanstack uery (react-auery) for frontend data fetching.
T Uie React Hook Form for forn Randling:
~ Use 70d for vatidatian
T Uie neact Context for state managenent.
T Use Prisna for database access.
Fotlow ALTSIB style guide for ¢ode formatting.
B e resei Cada onai] haativa ned{has e F1NEW {Usarcarulfocc userocard)
2102 et camors ien entiang e eact Comporenty:
Z 00 NOT TEACH HE HOW T0 SET UP THE PROJECT, JURP STRAIGHT T0 WRITING CONPONENTS 41D CODE..
Docs i more &2
Nentis et 2
Prompt Lo mor
o5 e o s | e o s

Giient component
Create a client component with the fol Create an API route with the following Create a new Next.js page based on the

Prisma schema o ox Serercomponent o =

Create or update a Prisna schema with Create a server component with the fol

Hub of rules, tools, and models to create,
share, and use custom Al code assistants

What is Al-native development?

@ Andrej Karpathy &

There's a new kind of coding | call "vibe coding", where you fully give in to
the vibes, embrace exponentials, and forget that the code even exists.
It's possible because the LLMs (e.g. Cursor Composer w Sonnet) are
getting too good. Also | just talk to Composer with SuperWhisper so |
barely even touch the keyboard. | ask for the dumbest things like
"decrease the padding on the sidebar by half" because I'm too lazy to
find it. | "Accept All" always, | don't read the diffs anymore. When | get
error messages | just copy paste them in with no comment, usually that
fixes it. The code grows beyond my usual comprehension, I'd have to
really read through it for a while. Sometimes the LLMs can't fix a bug so |
just work around it or ask for random changes until it goes away. It's not
too bad for throwaway weekend projects, but still quite amusing. I'm
building a project or webapp, but it's not really coding - | just see stuff,
say stuff, run stuff, and copy paste stuff, and it mostly works.

Vibe coding

@ Andrej Karpathy & o}
i

Noticing myself adopting a certain rhythm in Al-assisted coding (i.e.
code | actually and professionally care about, contrast to vibe code).

1. Stuff everything relevant into context (this can take a while in big
projects. If the project is small enough just stuff everything e.g. “files-to-
prompt . -e ts -e tsx -e css -e md --cxml --ignore node_modules -0
prompt.xml’)

2. Describe the next single, concrete incremental change we're trying to
implement. Don't ask for code, ask for a few high-level approaches,
pros/cons. There's almost always a few ways to do thing and the LLM's
judgement is not always great. Optionally make concrete.

3. Pick one approach, ask for first draft code.

4. Review / learning phase: (Manually...) pull up all the API docs in a side
browser of functions | haven't called before or | am less familiar with, ask
for explanations, clarifications, changes, wind back and try a different
approach.

6. Test.

7. Git commit.

Ask for suggestions on what we could implement next. Repeat.

Al-native development

An example Al-native development workflow

Agent to ask a model to do a task for you

/ﬁ l/“
I
de
O

a

it

W

de

O

C

O

e

it

d

a

d

ta

rS

de

u

tO

t

a

C

e

Autocomplete to have a model finish lines of code

= '_main__"':

import argparse
parser = argparse.ArgumentParser(description='Your CLI description.')

parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-1lama/Llama-2-7{
parser.add_argument('-—-compile', action='store_true', help='Whether to compile the model.')
parser.add_argument('--tasks', nargs='+', type=str, default=["hellaswag"], help='list of lm-eluthe
parser.add_argument('--limit', type=int, default=None, help='number of samples to evalulate')
parser.add_argument ' '--max_seq_length',

args = parser.parse_args
main
Path(args.checkpoint_path), args.compile, args.tasks, args.limit, args.max_seq_length,

=

J

}

Write the code manually without using a model

EXPLORER
v NANOGPT

assets

> config
data
gitattributes
gitignore
bench.py

» configurator.py

f LICENSE
model.py
sample.py
scaling_laws.ipynb
train.py

transformer_sizing.ip...

> OUTLINE
TIMELINE

master* O

bench.py %

of train.py

import os

nanoGPT

benchmarking

from contextlib import nullcontext

import numpy as np
import time
ort torch

from model import GPTConfig, GPT

batch_size
block_size

bias = Fa
real_data =
seed = 1337
device = 'cu
dtype t1
compile = T
profile =

' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else ‘flo

t16'

exec(open(*configurator.py').read())

torch.manual_seed(seed)
torch. cuda.manual_seed(seed)

torch. backends. cuda.matmul.allow_tf32

torch.backends. cudnn. allow_tf32
device_type =
ptdtype = {'f1
ctx = nullcontext()

PROBLEMS O >EBUG CONSOLE

ty@Continues-MacBook-Pro-2 nanoGPT % |

: torch.float32, 'bfloatlé
if device_type == 'cpu’ else torch.amp.autocast(device_type=device_type, dtype=ptdtype)

1 device else 'cpu’

torch.bfloat16, 'flo torch. float16} [dtype]

TERMINAL

Ln 1, Col 1

Spaces: 4

D Qm

B+ 0 @

UTF-8

LF

Python

o

[a}

What is an Al-native open architecture?

An open architecture is a horizontally-aligned system

£ ¥ stacklok
Today Emerging
Vertically-integrated solutions Horizontally-aligned systems

Orchestration (Control plane)

Workflow Workflow Workflow
Logic Logic Logic

Middleware (Security, Context)

Context Context Context
Management Management Management Resource access (MCP, AZA)

LLM LLM LLM

R Slide from “Tipping Al Code Generation on its Side” at the OReilly Al Codecon,
//I presented by Craig McLuckie, co-founder of Stacklok, Kubernetes, and CNCF

An open architecture is a horizontally-aligned system

£ ¥ stacklok
The problems with ... The power of ...
Vertically-integrated solutions Horizontally-aligned systems
e Closed / opaque e Open / modular
e Subject to disruption e Community-led innovation
e Trust is outsourced e Developer agency

Slide from “Tipping Al Code Generation on its Side” at the OReilly Al Codecon,
presented by Craig McLuckie, co-founder of Stacklok, Kubernetes, and CNCF

Overview of an Al-native open architecture

An Al-native open architecture

Qwen2.5-Coder running on MinlO storage for
vLLM in data center

development data

Git repo for rules that apply
across codebases

A
A 4

Claude 4 Sonnet running
on AWS Bedrock

/

Y

A

Open server

MCP server with tools to
interact with Sentry

A

Y

CodeGate from
Stacklok

f

!

' !

'

=

J

Open-source VS
Code extension client

Open-source JetBrains Open-source
plugin client CLI client

Other custom
clients

etc.

t

i f

i

!

Gemma 3 running on
Ollama locally

ﬁ //

An Al-native open architecture: Clients

Qwen2.5-Coder running on MinlO storage for
vLLM in data center

development data

Git repo for rules that apply
across codebases

\ "

Claude 4 Sonnet running
on AWS Bedrock

/

Y

A

Open server

MCP server with tools to
interact with Sentry

A

Y

CodeGate from
Stacklok

f

!

' !

!

Open-source VS
Code extension client

Open-source JetBrains Open-source
plugin client CLI client

Other custom
clients

etc.

t

i f

i

!

Gemma 3 running on
Ollama locally

Open-source clients

e Examples
o VS Code extension, JetBrains plugin, CLI tool
e Benefits
o You understand how it works and can learn to use it better
o Empower an ecosystem to build on top of and around them
o Enables developer to keep and leverage their development data

=

/Ny
_)

Custom clients i =

SDK / API that lets you pull in rules, models, tools into automation anywhere

For example, automation known as “agents” (rules, tools, and models in a loop)

Run step validation on file File migrated, yay!

Accelerating Large-Scale Test
Migration with LLMs 7\
", Charles Covey-Brandt 7minread - Mar 13,2025 up!

Y
Write LLM response Errors? — /
n

B9 Q2 e 0 to file SteP ” / — Last step?

t J \ME

The Airbnb Tech Blog Start step for file

ask to fix < o/ (

*LLM magic happens here ves,

,v
=

s < File fails this run
N\

An Al-native open architecture: Models

Qwen2.5-Coder running on MinlO storage for
VvLLM in a data center

development data

Git repo for rules that apply
across codebases

\ "

Claude 4 Sonnet running
on AWS Bedrock

/

Y

A

Open server

MCP server with tools to
interact with Sentry

A

Y

CodeGate from
Stacklok

f

!

' !

'

Open-source VS
Code extension client

Open-source JetBrains Open-source
plugin client CLI client

Other custom
clients

etc.

t

i f

i

!

Gemma 3 running on
Ollama locally

Models

Models are the intelligence that follows the rules using the tools to automate
tasks. They provide the reasoning and tool use capabilities needed to
implement automation.

Key Model Trends

1. Increasing Capabilities

2. More capable open models

3. Improved economics

4. Diversifying task requirements
5. Growing domain specialization

Models distributed across compute environments

Specialized model deployments based on security, cost, and performance needs:

e Local Development: Efficient models running directly on developer machines

for low-latency interactions
e Enterprise Self-Hosting: Support for organizations to fine-tune and deploy

models behind their firewalls
e VPC Deployments: Secure cloud deployments within customer VPCs to

maintain data sovereignty

An Al-native open architecture: Rules

Qwen2.5-Coder running on
vLLM in data center

MinlO storage for
development data

Git repo for rules that apply
across codebases

\ "

Claude 4 Sonnet running

/

on AWS Bedrock

Y

A

Open server

MCP server with tools to
interact with Sentry

A

Y

CodeGate from
Stacklok

f

' '

!

'

Open-source VS Open-source JetBrains Open-source
Code extension client plugin client CLI client

Other custom
clients

etc.

t i

f

i

!

Gemma 3 running on
Ollama locally

Rules Jal)

Rules are used to describe the intents, constraints, policies, specifications, etc.
within an organization

Collectively, they create comprehensive natural language descriptions that make
how you build software legible (i.e. rules) and accessible (i.e. tools) to models

Some rules stored with codebases in Git, others that cut across codebases are
stored in another centralized place (e.g. a Git repository)

An Al-native open architecture: Tools

Qwen2.5-Coder running on MinlO storage for
vLLM in data center

development data

Git repo for rules that apply
across codebases

\ "

Claude 4 Sonnet running
on AWS Bedrock

/

Y

A

Open server

MCP server with tools to
interact with Sentry

A

Y

CodeGate from
Stacklok

f

!

' !

'

Open-source VS
Code extension client

Open-source JetBrains Open-source
plugin client CLI client

Other custom
clients

etc.

t

i f

i

!

Gemma 3 running on
Ollama locally

Tools Vil

Tools are used to retrieve information in real-time and take action, enabling
models to interact with systems and data

1. “Runtime” Context: retrieving tickets from Linear/Jira/GitHub Issues,
retrieving documentation from Confluence/Notion/wikis, etc.

2. Actions: running tests to validate code changes, updating database
schemas based on code modifications, editing files in development
environments, etc.

) ~\~§'\
AV
4

An Al-native open architecture: Development data

Qwen2.5-Coder running on
vLLM in data center

MinlO storage for
development data

Git repo for rules that apply
across codebases

\ "

Claude 4 Sonnet running

/

on AWS Bedrock

Y

A

Open server

MCP server with tools to
interact with Sentry

A

Y

CodeGate from
Stacklok

f

' '

!

'

Open-source VS Open-source JetBrains Open-source
Code extension client plugin client CLI client

Other custom
clients

etc.

t i

f

i

!

Gemma 3 running on
Ollama locally

Development data i =

Dev data captures the "how" of development that exists between Git
commits and is automatically generated when you use models while coding

The step-by-step process of software creation that shows the

e patterns that make your organization unique
e context used to make development decisions
e reasoning behind each implementation choice

y

»

—

>

N
/ ’

F/

’/ % =

S
Development data Tl

You can use dev data to transform implicit, tribal knowledge into explicit,
collective assets that can be used to further automate development with Al

That is, development data can be used to improve rules, tools, and models

§
=

An Al-native open architecture: Ecosystem

Qwen2.5-Coder running on
vLLM in data center

MinlO storage for
development data

Git repo for rules that apply
across codebases

\ "

Claude 4 Sonnet running

/

on AWS Bedrock

Y

A

Open server

MCP server with tools to
interact with Sentry

A

Y

CodeGate from
Stacklok

f

' '

!

'

Open-source VS Open-source JetBrains Open-source
Code extension client plugin client CLI client

Other custom
clients

etc.

t i

f

i

!

Gemma 3 running on
Ollama locally

Ecosystem Vil

Anyone can extend open servers; an open architecture empowers an ecosystem to form
and grow around it. Example:

CodeGate from Stacklok

e Secrets Pll redaction to protect your sensitive credentials and anonymize
personally identifiable information

e Dependency risk awareness to update the LLM's knowledge of malicious or
deprecated open source packages

e One of many examples of to come; win together by working together

An Al-native open architecture: Server

Qwen2.5-Coder running on MinlO storage for
vLLM in data center

development data

Git repo for rules that apply
across codebases

\ "

Claude 4 Sonnet running
on AWS Bedrock

/

Y

A

Open server

MCP server with tools to
interact with Sentry

A

Y

CodeGate from
Stacklok

f

!

' !

'

Open-source VS
Code extension client

Open-source JetBrains Open-source
plugin client CLI client

Other custom
clients

etc.

t

i f

i

!

Gemma 3 running on
Ollama locally

. . U ¢ \ -
What is the Al-native open server now? i1 =

([~
!

Examples:

Authenticates users

Proxies requests

Manages configuration

Enables observability

Integrates with context sources

Transforms development data before storage

i

7~

_

N

/\
What is the Al-native open server becomlng’-’ i) 'f

=

e Single source of truth for how development works in an organization

e A natural language specification that makes how you build software
legible (i.e. rules) and accessible (i.e. tools) to models

e This living description needs to be comprehensive, evolve with you, and
require minimal human support / supervision

For this to happen, we need to design the required 1) workflows, 2)
collaboration, and 3) governance

”\
Ff

1. Customization via the open server i1 =

Custom assistants to personalize the rules, tools, and models necessary for specific
workflows. They make it easier for models to complete a task as desired by constraining
and focusing the rules and tools. Examples:

e Audit assistant to audit for security vulnerabilities and create a report that helps
you refactor and fix them

e Plan assistant to create a comprehensive product requirements document that
can be used to guide implementation

e Refactor assistant to focus on improving existing code without adding new
features

§
=

2. Collaboration via the open server i1 =

Collaborating with the organization and models to make improvements of rules, tools, and models

“Runtime” improvements (i.e. context “Compile Time"” Improvements (i.e.
windows) model training and fine-tuning)
e Enhancing rules utilization e Enhancing via pre-training
e Improving tool integration e Optimizing via post-training
e Using dev data to improve context e Specializing for an organization
e Better in-context learning e Better domain-specific models

=
N

3. Governance via the open server

Enterprise requirements to provide the necessary guardrails. Examples:

Security-first design

Data sovereignty options
Granular permission controls
Policy enforcement
Comprehensive audit trails
Credential management

Cost, performance monitoring

Why does an Al-native open architecture matter?

Why does an Al-native open architecture matter?

Creates significant advantages closed systems cannot match through

modularity, transparency, and interoperability

SIEMENS SIEMENS

Usage with Visual Studio Code
b L Integration and Continue.dev

Open Source LLMs for conunio s e e s e g g B

Visual Studio Code and JetBrains IDEs. Continue.dev allows you to use various LLM

4 April 2024

OE Deutsch
API configurations, such as open source, commercial, local, or remote. It provides a

into the IDEs, and also offers tab completion. Below is

Want to read i

(Note: Part of this article was generated by an open source LLM) language? in Visual Studio Code:

Auto-translate it into Do os

In this article we talk about our journey exploring the open source Large Language
SR EI RO

Models (LLM) and how we build an in-t lem in order to enable our

developers within Siemens.
write a hello world example in golang

Why Open Source LLMs? e
S Here's a simple "Hello World" program written in Go (Golang):
= f By Antoine Auger:
Using open source LLMs in-house offers several advantages over closed source —_—
| —
J models.

ide of doing
operations together.

()

By Peter Marko:

Related Tags

I /
[£
;64 L =
' \ /
. 0 WF= ‘/
Why does an Al-native open architecture matter? i =

Al-native open architectures aim to amplify developers in the long run

e You keep your data to further automate your development with models

Al-native closed solutions aim to automate developers in the long run

e They collect your data to further automate you with models

Thanks!

Ty Dunn
Co-founder of Continue

ty@continue.dev

