
An open architecture for AI-native development

Ty Dunn, Co-founder of Continue

Goals for this talk

1. Describe one of many possible open architectures for
AI-native development

2. Inspire you to think more deeply about the architecture
underlying the future of software development

What is Continue?

Open-source IDE extensions Hub of rules, tools, and models to create,
share, and use custom AI code assistants

What is AI-native development?

Vibe coding AI-native development

An example AI-native development workflow

Agent to ask a model to do a task for you

Chat to understand and iterate on code with a model

Edit to transform a section of code using a model

Autocomplete to have a model finish lines of code

Write the code manually without using a model

What is an AI-native open architecture?

An open architecture is a horizontally-aligned system

Slide from “Tipping AI Code Generation on its Side” at the O'Reilly AI Codecon,
presented by Craig McLuckie, co-founder of Stacklok, Kubernetes, and CNCF

An open architecture is a horizontally-aligned system

Slide from “Tipping AI Code Generation on its Side” at the O'Reilly AI Codecon,
presented by Craig McLuckie, co-founder of Stacklok, Kubernetes, and CNCF

Overview of an AI-native open architecture

An AI-native open architecture

Open server

Open-source VS
Code extension client

Qwen2.5-Coder running on
vLLM in data center

Open-source JetBrains
plugin client

Open-source
CLI client

Other custom
clients etc.

Git repo for rules that apply
across codebases

MinIO storage for
development data

Gemma 3 running on
Ollama locally

MCP server with tools to
interact with Sentry

Claude 4 Sonnet running
on AWS Bedrock

CodeGate from
Stacklok

An AI-native open architecture: Clients

Open server

Open-source VS
Code extension client

Qwen2.5-Coder running on
vLLM in data center

Open-source JetBrains
plugin client

Open-source
CLI client

Other custom
clients etc.

Git repo for rules that apply
across codebases

MinIO storage for
development data

Gemma 3 running on
Ollama locally

MCP server with tools to
interact with Sentry

Claude 4 Sonnet running
on AWS Bedrock

CodeGate from
Stacklok

Open-source clients

● Examples
○ VS Code extension, JetBrains plugin, CLI tool

● Benefits
○ You understand how it works and can learn to use it better
○ Empower an ecosystem to build on top of and around them
○ Enables developer to keep and leverage their development data

Custom clients

SDK / API that lets you pull in rules, models, tools into automation anywhere

For example, automation known as “agents” (rules, tools, and models in a loop)

An AI-native open architecture: Models

Open server

Open-source VS
Code extension client

Qwen2.5-Coder running on
vLLM in a data center

Open-source JetBrains
plugin client

Open-source
CLI client

Other custom
clients etc.

Git repo for rules that apply
across codebases

MinIO storage for
development data

Gemma 3 running on
Ollama locally

MCP server with tools to
interact with Sentry

Claude 4 Sonnet running
on AWS Bedrock

CodeGate from
Stacklok

Models

Models are the intelligence that follows the rules using the tools to automate
tasks. They provide the reasoning and tool use capabilities needed to
implement automation.

Key Model Trends

1. Increasing Capabilities
2. More capable open models
3. Improved economics
4. Diversifying task requirements
5. Growing domain specialization

Models distributed across compute environments

Specialized model deployments based on security, cost, and performance needs:

● Local Development: Efficient models running directly on developer machines
for low-latency interactions

● Enterprise Self-Hosting: Support for organizations to fine-tune and deploy
models behind their firewalls

● VPC Deployments: Secure cloud deployments within customer VPCs to
maintain data sovereignty

An AI-native open architecture: Rules

Open server

Open-source VS
Code extension client

Qwen2.5-Coder running on
vLLM in data center

Open-source JetBrains
plugin client

Open-source
CLI client

Other custom
clients etc.

Git repo for rules that apply
across codebases

MinIO storage for
development data

Gemma 3 running on
Ollama locally

MCP server with tools to
interact with Sentry

Claude 4 Sonnet running
on AWS Bedrock

CodeGate from
Stacklok

Rules

Rules are used to describe the intents, constraints, policies, specifications, etc.
within an organization

Collectively, they create comprehensive natural language descriptions that make
how you build software legible (i.e. rules) and accessible (i.e. tools) to models

Some rules stored with codebases in Git, others that cut across codebases are
stored in another centralized place (e.g. a Git repository)

An AI-native open architecture: Tools

Open server

Open-source VS
Code extension client

Qwen2.5-Coder running on
vLLM in data center

Open-source JetBrains
plugin client

Open-source
CLI client

Other custom
clients etc.

Git repo for rules that apply
across codebases

MinIO storage for
development data

Gemma 3 running on
Ollama locally

MCP server with tools to
interact with Sentry

Claude 4 Sonnet running
on AWS Bedrock

CodeGate from
Stacklok

Tools

Tools are used to retrieve information in real-time and take action, enabling
models to interact with systems and data

1. “Runtime” Context: retrieving tickets from Linear/Jira/GitHub Issues,
retrieving documentation from Confluence/Notion/wikis, etc.

2. Actions: running tests to validate code changes, updating database
schemas based on code modifications, editing files in development
environments, etc.

An AI-native open architecture: Development data

Open server

Open-source VS
Code extension client

Qwen2.5-Coder running on
vLLM in data center

Open-source JetBrains
plugin client

Open-source
CLI client

Other custom
clients etc.

Git repo for rules that apply
across codebases

MinIO storage for
development data

Gemma 3 running on
Ollama locally

MCP server with tools to
interact with Sentry

Claude 4 Sonnet running
on AWS Bedrock

CodeGate from
Stacklok

Development data

Dev data captures the "how" of development that exists between Git
commits and is automatically generated when you use models while coding

The step-by-step process of software creation that shows the

● patterns that make your organization unique
● context used to make development decisions
● reasoning behind each implementation choice

Development data

You can use dev data to transform implicit, tribal knowledge into explicit,
collective assets that can be used to further automate development with AI

That is, development data can be used to improve rules, tools, and models

An AI-native open architecture: Ecosystem

Open server

Open-source VS
Code extension client

Qwen2.5-Coder running on
vLLM in data center

Open-source JetBrains
plugin client

Open-source
CLI client

Other custom
clients etc.

Git repo for rules that apply
across codebases

MinIO storage for
development data

Gemma 3 running on
Ollama locally

MCP server with tools to
interact with Sentry

Claude 4 Sonnet running
on AWS Bedrock

CodeGate from
Stacklok

Ecosystem
Anyone can extend open servers; an open architecture empowers an ecosystem to form
and grow around it. Example:

CodeGate from Stacklok

● Secrets PII redaction to protect your sensitive credentials and anonymize
personally identifiable information

● Dependency risk awareness to update the LLM's knowledge of malicious or
deprecated open source packages

● One of many examples of to come; win together by working together

An AI-native open architecture: Server

Open server

Open-source VS
Code extension client

Qwen2.5-Coder running on
vLLM in data center

Open-source JetBrains
plugin client

Open-source
CLI client

Other custom
clients etc.

Git repo for rules that apply
across codebases

MinIO storage for
development data

Gemma 3 running on
Ollama locally

MCP server with tools to
interact with Sentry

Claude 4 Sonnet running
on AWS Bedrock

CodeGate from
Stacklok

What is the AI-native open server now?

Examples:

● Authenticates users
● Proxies requests
● Manages configuration
● Enables observability
● Integrates with context sources
● Transforms development data before storage

What is the AI-native open server becoming?

● Single source of truth for how development works in an organization
● A natural language specification that makes how you build software

legible (i.e. rules) and accessible (i.e. tools) to models
● This living description needs to be comprehensive, evolve with you, and

require minimal human support / supervision

For this to happen, we need to design the required 1) workflows, 2)
collaboration, and 3) governance

1. Customization via the open server

Custom assistants to personalize the rules, tools, and models necessary for specific
workflows. They make it easier for models to complete a task as desired by constraining
and focusing the rules and tools. Examples:

● Audit assistant to audit for security vulnerabilities and create a report that helps
you refactor and fix them

● Plan assistant to create a comprehensive product requirements document that
can be used to guide implementation

● Refactor assistant to focus on improving existing code without adding new
features

2. Collaboration via the open server

Collaborating with the organization and models to make improvements of rules, tools, and models

“Runtime” improvements (i.e. context
windows)

● Enhancing rules utilization
● Improving tool integration
● Using dev data to improve context
● Better in-context learning

“Compile Time” Improvements (i.e.
model training and fine-tuning)

● Enhancing via pre-training
● Optimizing via post-training
● Specializing for an organization
● Better domain-specific models

3. Governance via the open server

Enterprise requirements to provide the necessary guardrails. Examples:

● Security-first design
● Data sovereignty options
● Granular permission controls
● Policy enforcement
● Comprehensive audit trails
● Credential management
● Cost, performance monitoring

Why does an AI-native open architecture matter?

Why does an AI-native open architecture matter?

Creates significant advantages closed systems cannot match through

modularity, transparency, and interoperability

Why does an AI-native open architecture matter?

AI-native open architectures aim to amplify developers in the long run

● You keep your data to further automate your development with models

AI-native closed solutions aim to automate developers in the long run

● They collect your data to further automate you with models

Thanks!

Ty Dunn

Co-founder of Continue

ty@continue.dev

