SPring HATEOAS

Who am I?

= Distinguished Key Expert at Siemens
= Open-Source Lover & Gamer

= E-mail: kai.toedter@siemens.com
= Mastodon: https://mastodon.social/@kaitoedter
= GitHub: github.com/toedter

= code.siemens.com: kai.toedter

6/3/2025 2l Bl License.

Why JSON:API

= We evaluated serveral media types /
structures / frameworks for REST APIs

= JSON:API brought most the commonly needed
features out of the box

INJOL\\WAY X

Web site: jsonapi.org

“JSON:API is designed to minimize both the
number of requests and the amount of data
transmitted between clients and servers. This
efficiency is achieved without compromising
readability, flexibility, or discoverability.”

Siemens API| Guidelines

SIEMENS Internal Developer Portal ~ a .
Home APIs ideli C i

H H B AP MAY support defining the sart order for each sort fleld individually (700 3] -
APl Guidelines v On this page v

| Rule description.

Overview Sort order MUST be defined for each sort field indvidually [700.3.1] ventions Used in These

Guidelines

API Styles, Challenges > | Rute descrption.

Interpreting the Rules
& Selection Guide

Deprecatad | Removed

__ API MAY provide sorting of

Common APl > R ing the sort order for sach sort feld indi [700.4] collections In response
[NLEES Rule description Unique Rule Identifiers
JSON:API and Backward
REST API ~ Compatibility to Version 1.1
Guidelines
Media JSON:API and Backward Compatibility to Version 1.1
edia Type

Join the community &5
. The release of the APl guidelines v1.2.0 removed all REST-specific rules which were based on the R
Versioning N o Provide feedback &

JSON:API guidelines.

Error Reporting R N - .
Version 2.0.0 of the API guidelines adopted elements of the JSON:API guidelines while also
Commen Operations incorporating feedback collected from v1.1.0. We collaborated across business units on a set of
reasonable and feasible APl guidelines that can be implemented with minimal effort across Siemens

Bulk Operations projects.

Sparse Fieldsets In addition to providing best practices for developing new APIs, the latest guidelines also provide
Filtering guidance on how to incorporate these guidelines to well-designed legacy APIs and become compliant . .

with Siemens Xcelerator REST API guidelines. A P I S CO m pI Ia nt W I t h
Pagination

The latest guidelines are inspired by JSON:API and Zalando REST guidelines that let you choose and

Sorting adapt the rules that are applicable to your business use cases. We have selected and combined them J S O N : AP I a re

in a way to create a Siemens style for our APl guideline.
Security

: . r r T ~ O b I
sest Pracices APIs compliant with JSON API are backward compatible with these guidelines b a C kWa rd CO m pa t I e

The API guidelines suggest applying breaking rules only on the keyword SHOULD. Hence, the latest . . .
Tools guidelines recommend solutions other than JSON:API. However, you can still refer to JSON:API as a W I t h t h ese g u I d e I I n e S .
Appendix A - Data Types base for your APl development along with the latest API guidelines. API clients built around JSON:API

are able to take advantage of its features to become compliant with the current version of the REST

A

rhannalan « APl Design Guidelines.

Siemens Developer Portal

SIEMENS

Internal Developer Portal ~

Weather X (internal

Overview

Getting Started

REST API

Changelog

FAQ

Contact

1) Media type
applicationivnd.api+json
Controls Mecept header.
Examples
weather-example-current -

Example Volve Schema

N Back to top
-

Join the community &

Provide feedback &

< @

~ JSON:API example in the

Siemens Developer Portal

HATEOAS

" |s for
“Hypermedia As The Engine Of Application State”

= Very hard to pronounce ©
= Key concept of REST

= WIKIPEDIA: With HATEOAS, a client interacts
with a network application whose application
servers provide information dynamically
through hypermedia

Minimal JSON:API Example
{

"data": {
llidll: ll1lI’
"type": "movies”,
"attributes": {
"title": "The Shawshank Redemption",
"year": 1994,
"rating": 9.3,
"rank": 1
}
I

"links": {

Spring HATEOAS

= Spring basic framework for REST with
Hypermedia support

= Supports generic Hypermedia API

= Build-in Support for Representations like
HAL, HAL-FORMS, UBER, Collection+JSON, ...

= Community-based media types: JSON:API, Siren

= https://docs.spring.io/spring-hateoas/docs/current-
SNAPSHOT/reference/html/

https://docs.spring.io/spring-hateoas/docs/current-SNAPSHOT/reference/html/
https://docs.spring.io/spring-hateoas/docs/current-SNAPSHOT/reference/html/
https://docs.spring.io/spring-hateoas/docs/current-SNAPSHOT/reference/html/
https://docs.spring.io/spring-hateoas/docs/current-SNAPSHOT/reference/html/
https://docs.spring.io/spring-hateoas/docs/current-SNAPSHOT/reference/html/
https://docs.spring.io/spring-hateoas/docs/current-SNAPSHOT/reference/html/

Links

= Essential for hypermedia
= |n REST: How to navigate to a REST resource
* Link semantic/name is called link relation

The relation between a REST resource and the
target REST resource

= Links are well known from HTML, like
link text

Links in Spring HATEOAS
Link link = new Link("/my-url");
= Alink automatically has a self relation

Link link = new Link("/my-ur!l", "my-rel");

= A link with my-rel relation

Link Relations

= Many Link relations are standardized by IANA
IANA = Internet Assighed Numbers Authority

https://www.iana.org/assicnments/link-
relations/link-relations.xhtml

= Examples: self, item, next, last, ...

= Recommendation: Before creating a custom
name for a link relation, look up the IANA list!

https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml

Links are great!

" For providing navigation to useful other REST
resources
" For providing domain knowledge to the REST

clients, so that they don’t have to compute
domain state on there own

s o A AR I T Eh .
Representatlon I\/Igcfels

Representation Models

" REST => Representational State Transfer

= Manipulation of resources through their
representations

= Domain Model = Representation Model

= Spring HATEOAS provides
RepresentationModel abstraction

Spring HATEOAS RepresentationModel

" RepresentationModel

Root class, for REST item resources
= CollectionModel

For REST collection resources
= EntityModel

Convenient wrapper for converting a domain model
into a representation model

= PagedModel
Addition to CollectionModel for paged collections

Domain Model Example
public class Director {

private Long id;
private String name;

public Director(String name) {
this.name = name;
}

Controller Example

@GetMapping("/directors/{id}")
public ResponseEntity<EntityModel<Director>>

findOne(@PathVariable Long id) {
return repository.findByld(id)
.map(director -> EntityModel.of(director)
.add(linkTo(methodOn(DirectorController.class)
findOne(director.getld())).withSelfRel()))
.map(ResponseEntity::ok)
.orElse(ResponseEntity.notFound().build());

Response in HAL Media Type

{
"id": 2,
"name": "Frank Darabont",
" links": {
"self": {
"href": "http://localhost:8080/api/directors/2"
}

json:api} for Spring HATEOAS

JSON:API for Spring HATEOAS

= Open Source Project
= Apache 2 License

= https://github.com/toedter/spring-hateoas-
|sonapi

* Reference Documentation

= APl Documentation

https://github.com/toedter/spring-hateoas-jsonapi
https://github.com/toedter/spring-hateoas-jsonapi
https://github.com/toedter/spring-hateoas-jsonapi
https://github.com/toedter/spring-hateoas-jsonapi
https://github.com/toedter/spring-hateoas-jsonapi
https://github.com/toedter/spring-hateoas-jsonapi

@ spring-hateoas-jsonapi Public

¥ main ~ ¥ 5Branches © 40 Tags Q Gotofile

@ toedter docs: fix copyright date in reference docs

t

57 Unpin & Unwatch 5 ~

Add file ~ ‘:() Code ~ ‘

033eae? - 32 minutes ago @ 664 Commits

B _github/workflows chore(deps): update codecov/codecov-action action to v5 6 months ago
B example chore: prepare version 2.1.5-SNAPSHOT 1 hour ago
8 gradle/wrapper chore(deps): update dependency gradle to v8.14.1 5 days ago
Il b docs: fix copyright date in reference docs 32 minutes ago
[.gitignore chore: added more tests 5 years ago
[prettierrc chore(prettier): change line endings to LF (was CRLF) 4 months ago
[LICENSE chore: initial version 5 years ago
README.adoc chore: release version 2.1.4 1 hour ago
[gradlew chore(deps): update dependency gradle to v8.14 last month
[gradlew.bat chore(deps): update dependency gradle to v8.14 last month
[renovatejson Add renovate.json 9 months ago
[settings.gradle chore: cleanup gradle config 3 months ago

[README &5 Apache-2.0 license

———
() Build m & quality gate paﬁ @codecov - maven-central - License Apache 2.0

JSON:API for Spring HATEOAS

2

This is an implementation of the media type application/vnd.api+json (JSON:API)to be integrated with Spring

HATEOAS. The goal is to use the existing Spring HATEOAS representation models to serialize/deserialize them

according to the JSON:APIspeaidee htips Fsenapioigs)

% Fork 15

About

W Starred 117

&

A JSON:API media type implementation

for Spring HATEOAS

[Readme

&8 Apache-2.0 license

Ar Activity
¥ 117 stars

® 5 watching

% 15 forks

Releases 40

Q v2.1.4 (Latest

1 hour ago

+ 39 releases

Packages

No packages published
Publish your first package

Contributors 7
ense 0O®

Deployments 500+

@ github-pages 30 minutes ago

+ more deployments

Languages

@

Java 100D%

Project Dependencies

Maven:

<dependency>
<groupld>com.toedter</groupld>
<artifactld>spring-hateoas-jsonapi</artifactld>
<version>2.1.4</version>

</dependency>

Gradle:
implementation 'com.toedter:spring-hateoas-jsonapi:2.1.4'

Domain Model Example
public class Director {

private Long id;
private String name;

public Director(String name) {
this.name = name;
}

Response in JSON:API media type

{
"data": {
llidll: II2II’
"type": "directors”,
"attributes": {
"name": "Frank Darabont"

}

}

"links": {

6/3/2025 © Kai Todter, Licensed'under a Creative Co\mmons Attl;ibution 4.0'Int§_rnational License. “

Annotations

@JsonApild to mark a JSON:API id
@JsonApiType to mark a JSON:API type

@JsonApiTypeForClass to mark a class to provide a
JSON:API type

@JsonApiRelationships to mark a JSON:API
relationship, only used for deserialization

@JsonApiMeta to serialize/deserialize properties to
JSON:AP| meta

Example with Annotations
public class Movie {

@Id

private String myld;
@JsonApiType

private String myType;
@JsonApiMeta

private String myMeta;

private String title;
}

6/3/2025 © Kai Todter, Licensed under a Creative Commons Attribution 4.0 International License

30

Annotations Example (2)

EntityModel.of(
new Movie("1", "MOVIE", "metaValue", "Star Wars"));

will be rendered as

"data": {
llidll: "1",
"type": "MOVIE"'
"attributes": {
"title": "Star Wars"

"meta": {

"myMeta": "metaValue"

}

JsonApiBuilder

Movie movie = new Movie("1", "Star Wars");

final RepresentationModel<?> jsonApiModel =
jsonApiModel()

.model(movie)
build();

Relationships

Relationships

" |In JSON:API, relationships between REST resources are
made explicit, using the relationship object

= Relationships can be to-one or to-many

= Relationships must contain at least one of:

links: a links object containing at least one of the following:

self: a link for the relationship itself
related: a related resource link

data: resource linkage with id and type

meta: meta object that contains non-standard meta-
information about the relationship

Build Relationships

Movie movie = new Movie("1", "Star Wars");
Director director = new Director("1", "George Lucas");

final RepresentationModel<?> jsonApiModel =
jsonApiModel()
.model(movie)
.relationship("directors"”, director)

build();

Relationsship Example

"data": {
Ilidll: Illll’
"type": "movies",
"attributes": {

"title": "Star Wars"

"relationships": {
"directors": {
"data": {
Ilidll: ||1Il'
"type": "directors"

ol — T,

Inclusion

‘11"

1 G A

T e
6/3/2025 o mishodtensitensediililiicr a/Creative Commons Atftribution 4.0 International License. 1 38

Inclusion of Related Resources

= With included, you can include the content of
related recourses in the compound document
" The JsonApiBuilder supports adding

A single included resource
A collection of included resources

= The builder assures that included resources
with same id and type appear only ONCE

Inclusion Example

for (Movie movie : pagedResult.getContent()) {
jsonApiModelBuilder.included(movie.getDirectors());

}

"included": [
{
Ilidll: II1||’
"type": "directors",
"attributes": {

"name": "Lana Wachowski"

}
b

Sparse Fieldsets

Convenient way to specify which
Attributes of Resources
Relationships (by name)

Attributes of included Relationships

will be included in the JSON response

Controller for Sparse Fieldset

In a REST controller, a method with HTTP-
mapping could provide an optional request
attribute for each sparse fieldset

@GetMapping("/movies")

public ResponseEntity<RepresentationModel<?>> findAll(
@RequestParam(value = "included”, required = false) String[] included,
@RequestParam(value = "fields/movies|"”, required = false) String[] fieldsMovies) {

6/3/2025

Meta

= JSON:API Meta can be added using the builder
or by using the @JsonApiMeta annotation

" Paging information Meta can be added
automatically => Use PagedModel

Pagination Example

"links": {
"self": "http://localhost/movies",
"first": "http://localhost/movies?page[number]=0&page|[size]=2",
"prev": "http://localhost/movies?page[number]=0&page[size]=2",
"next": "http://localhost/movies?page[number]=2&page[size]=2",
"last": "http://localhost/movies?page[number]=49&page[size]=2"
2
"meta": {
upageu: {
"number": 1,
"size": 2,
"totalPages": 50,

Configuration

You can configure

If the JSON:API version should be rendered automatically, the default is false.

If JSON:API types should be rendered as pluralized or non pluralized class names.
The default is pluralized

If JSON:API types should be rendered as lower cased or original class names.
The default is lower cased

If page information of a PagedModel should be rendered automatically as

JSON:API meta object.
The default is true

If a specific Java class should be rendered with a specific JSON:API type.

A lambda expression to add additional configuration to the
Jackson ObjectMapper used for serialization.

Experimental: Render Spring HATEOAS affordances as JSON:API link meta.

Configuration Example

@Bean
JsonApiConfiguration jsonApiConfiguration() {
return new JsonApiConfiguration()
.withJsonApiVersionRendered(true)
.withPluralizedTypeRendered(false)
.withLowerCasedTypeRendered(false)
withTypeForClass(MyMovie.class, "my-movies")
withObjectMapperCustomizer(
objectMapper -> objectMapper.configure(
SerializationFeature.WRITE_DATES AS TIMESTAMPS,
true));

Error Handling

To create JSON:API compliant error messages, you can
use JsonApiErrors and JsonApiError

return ResponseEntity.badRequest().body(
JsonApiErrors.create().withError(

JsonApiError.create()
withAboutLink("http://movie-db.com/problem")
withTitle("Movie-based problem")
WwithStatus(HttpStatus.BAD REQUEST.toString())
withDetail("This is a test case")));

Error Example
{

"errors": [

{
"links": {
"about": "http://movie-db.com/problem"

b
"status": "400 BAD_REQUEST",

"title": "Movie-based problem",
"detail": "This is a test case"

Conclusion

With JSON:API for Spring HATEOAS,

it is very easy to support JSON:API (serialization
+ deserialization) out of the box. With the
builder, special JSON:API features like
relationships and sparse fieldsets are supported
as well.

KAl Oodter, Licensed utri Creative Com.sns Attrib

Links

= Spring HATEOAS:
https://github.com/spring-projects/spring-hateoas

= JSON:API for Spring HATEOAS:
https://github.com/toedter/spring-hateoas-jsonapi

https://github.com/spring-projects/spring-hateoas
https://github.com/spring-projects/spring-hateoas
https://github.com/spring-projects/spring-hateoas
https://github.com/spring-projects/spring-hateoas
https://github.com/spring-projects/spring-hateoas
https://github.com/toedter/spring-hateoas-jsonapi
https://github.com/toedter/spring-hateoas-jsonapi
https://github.com/toedter/spring-hateoas-jsonapi
https://github.com/toedter/spring-hateoas-jsonapi
https://github.com/toedter/spring-hateoas-jsonapi

License

= This work is licensed under a Creative Commons
Attribution 4.0 International License.

See http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Slide 1
	Slide 2: Who am I?
	Slide 3: Show Hands!
	Slide 4: Why JSON:API
	Slide 5: JSON:API
	Slide 6: Siemens API Guidelines
	Slide 7: Siemens Developer Portal
	Slide 8: HATEOAS
	Slide 9: Minimal JSON:API Example
	Slide 10: Spring HATEOAS
	Slide 11: Links
	Slide 12: Links
	Slide 13: Links in Spring HATEOAS
	Slide 14: Link Relations
	Slide 15: Links are great!
	Slide 16: Representation Models
	Slide 17: Representation Models
	Slide 18: Spring HATEOAS RepresentationModel
	Slide 19: Domain Model Example
	Slide 20: Controller Example
	Slide 21: Response in HAL Media Type
	Slide 22
	Slide 23: JSON:API for Spring HATEOAS
	Slide 24
	Slide 25: Project Dependencies
	Slide 26: Domain Model Example
	Slide 27: Response in JSON:API media type
	Slide 28: Annotations
	Slide 29: Annotations
	Slide 30: Example with Annotations
	Slide 31: Annotations Example (2)
	Slide 32: Builder
	Slide 33: JsonApiBuilder
	Slide 34: Relationships
	Slide 35: Relationships
	Slide 36: Build Relationships
	Slide 37: Relationsship Example
	Slide 38: Inclusion
	Slide 39: Inclusion of Related Resources
	Slide 40: Inclusion Example
	Slide 41: Sparse Fieldsets
	Slide 42: Controller for Sparse Fieldset
	Slide 43: Sparse Fieldsets Demo
	Slide 44: Meta
	Slide 45: Pagination Example
	Slide 46: Configuration
	Slide 47: Configuration
	Slide 48: Configuration Example
	Slide 49: Error Handling
	Slide 50: Error Example
	Slide 51: Conclusion
	Slide 52: Discussion
	Slide 53: Links
	Slide 54: License

