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Who am I?

= Distinguished Key Expert at Siemens
= Open-Source Lover & Gamer

= E-mail: kai.toedter@siemens.com
= Mastodon: https://mastodon.social/@kaitoedter
= GitHub: github.com/toedter

= code.siemens.com: kai.toedter
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Why JSON:API

= We evaluated serveral media types /
structures / frameworks for REST APIs

= JSON:API brought most the commonly needed
features out of the box



INJOL\\WAY X

Web site: jsonapi.org

“JSON:API is designed to minimize both the
number of requests and the amount of data
transmitted between clients and servers. This
efficiency is achieved without compromising
readability, flexibility, or discoverability.”
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HATEOAS

" |s for
“Hypermedia As The Engine Of Application State”

= Very hard to pronounce ©
= Key concept of REST

= WIKIPEDIA: With HATEOAS, a client interacts
with a network application whose application
servers provide information dynamically
through hypermedia



Minimal JSON:API Example
{

"data": {
llidll: ll1lI’
"type": "movies”,
"attributes": {
"title": "The Shawshank Redemption",
"year": 1994,
"rating": 9.3,
"rank": 1
}
I

"links": {




Spring HATEOAS

= Spring basic framework for REST with
Hypermedia support

= Supports generic Hypermedia API

= Build-in Support for Representations like
HAL, HAL-FORMS, UBER, Collection+JSON, ...

= Community-based media types: JSON:API, Siren

= https://docs.spring.io/spring-hateoas/docs/current-
SNAPSHOT/reference/html/
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Links

= Essential for hypermedia
= |n REST: How to navigate to a REST resource
* Link semantic/name is called link relation

The relation between a REST resource and the
target REST resource

= Links are well known from HTML, like
<a href="url">link text</a>



Links in Spring HATEOAS
Link link = new Link("/my-url");
= Alink automatically has a self relation

Link link = new Link("/my-ur!l", "my-rel");

= A link with my-rel relation



Link Relations

= Many Link relations are standardized by IANA
IANA = Internet Assighed Numbers Authority

https://www.iana.org/assicnments/link-
relations/link-relations.xhtml

= Examples: self, item, next, last, ...

= Recommendation: Before creating a custom
name for a link relation, look up the IANA list!
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Links are great!

" For providing navigation to useful other REST
resources
" For providing domain knowledge to the REST

clients, so that they don’t have to compute
domain state on there own
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Representation Models

" REST => Representational State Transfer

= Manipulation of resources through their
representations

= Domain Model = Representation Model

= Spring HATEOAS provides
RepresentationModel abstraction



Spring HATEOAS RepresentationModel

" RepresentationModel

Root class, for REST item resources
= CollectionModel

For REST collection resources
= EntityModel

Convenient wrapper for converting a domain model
into a representation model

= PagedModel
Addition to CollectionModel for paged collections



Domain Model Example
public class Director {

private Long id;
private String name;

public Director(String name) {
this.name = name;
}



Controller Example

@GetMapping("/directors/{id}")
public ResponseEntity<EntityModel<Director>>

findOne(@PathVariable Long id) {
return repository.findByld(id)
.map(director -> EntityModel.of(director)
.add(linkTo(methodOn(DirectorController.class)
findOne(director.getld())).withSelfRel()))
.map(ResponseEntity::ok)
.orElse(ResponseEntity.notFound().build());



Response in HAL Media Type

{
"id": 2,
"name": "Frank Darabont",
" links": {
"self": {
"href": "http://localhost:8080/api/directors/2"
}




json:api} for Spring HATEOAS




JSON:API for Spring HATEOAS

= Open Source Project
= Apache 2 License

= https://github.com/toedter/spring-hateoas-
|sonapi

* Reference Documentation

= APl Documentation
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Project Dependencies

Maven:

<dependency>
<groupld>com.toedter</groupld>
<artifactld>spring-hateoas-jsonapi</artifactld>
<version>2.1.4</version>

</dependency>

Gradle:
implementation 'com.toedter:spring-hateoas-jsonapi:2.1.4'



Domain Model Example
public class Director {

private Long id;
private String name;

public Director(String name) {
this.name = name;
}



Response in JSON:API media type

{
"data": {
llidll: II2II’
"type": "directors”,
"attributes": {
"name": "Frank Darabont"

}

}

"links": {
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Annotations

@JsonApild to mark a JSON:API id
@JsonApiType to mark a JSON:API type

@JsonApiTypeForClass to mark a class to provide a
JSON:API type

@JsonApiRelationships to mark a JSON:API
relationship, only used for deserialization

@JsonApiMeta to serialize/deserialize properties to
JSON:AP| meta




Example with Annotations
public class Movie {

@Id

private String myld;
@JsonApiType

private String myType;
@JsonApiMeta

private String myMeta;

private String title;
}

6/3/2025 © Kai Todter, Licensed under a Creative Commons Attribution 4.0 International License

30



Annotations Example (2)

EntityModel.of(
new Movie("1", "MOVIE", "metaValue", "Star Wars"));

will be rendered as

"data": {
llidll: "1",
"type": "MOVIE"'
"attributes": {
"title": "Star Wars"

"meta": {

"myMeta": "metaValue"

}







JsonApiBuilder

Movie movie = new Movie("1", "Star Wars");

final RepresentationModel<?> jsonApiModel =
jsonApiModel()

.model(movie)
build();



Relationships




Relationships

" |In JSON:API, relationships between REST resources are
made explicit, using the relationship object

= Relationships can be to-one or to-many

= Relationships must contain at least one of:

links: a links object containing at least one of the following:

self: a link for the relationship itself
related: a related resource link

data: resource linkage with id and type

meta: meta object that contains non-standard meta-
information about the relationship



Build Relationships

Movie movie = new Movie("1", "Star Wars");
Director director = new Director("1", "George Lucas");

final RepresentationModel<?> jsonApiModel =
jsonApiModel()
.model(movie)
.relationship("directors"”, director)

build();



Relationsship Example

"data": {
Ilidll: Illll’
"type": "movies",
"attributes": {

"title": "Star Wars"

"relationships": {
"directors": {
"data": {
Ilidll: ||1Il'
"type": "directors"
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Inclusion of Related Resources

= With included, you can include the content of
related recourses in the compound document
" The JsonApiBuilder supports adding

A single included resource
A collection of included resources

= The builder assures that included resources
with same id and type appear only ONCE



Inclusion Example

for (Movie movie : pagedResult.getContent()) {
jsonApiModelBuilder.included(movie.getDirectors());

}

"included": [
{
Ilidll: II1||’
"type": "directors",
"attributes": {

"name": "Lana Wachowski"

}
b



Sparse Fieldsets

Convenient way to specify which
Attributes of Resources
Relationships (by name)

Attributes of included Relationships

will be included in the JSON response



Controller for Sparse Fieldset

In a REST controller, a method with HTTP-
mapping could provide an optional request
attribute for each sparse fieldset

@GetMapping("/movies")

public ResponseEntity<RepresentationModel<?>> findAll(
@RequestParam(value = "included”, required = false) String[] included,
@RequestParam(value = "fields/movies|"”, required = false) String[] fieldsMovies) {
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Meta

= JSON:API Meta can be added using the builder
or by using the @JsonApiMeta annotation

" Paging information Meta can be added
automatically => Use PagedModel



Pagination Example

"links": {
"self": "http://localhost/movies",
"first": "http://localhost/movies?page[number]=0&page|[size]=2",
"prev": "http://localhost/movies?page[number]=0&page[size]=2",
"next": "http://localhost/movies?page[number]=2&page[size]=2",
"last": "http://localhost/movies?page[number]=49&page[size]=2"
2
"meta": {
upageu: {
"number": 1,
"size": 2,
"totalPages": 50,







Configuration

You can configure

If the JSON:API version should be rendered automatically, the default is false.

If JSON:API types should be rendered as pluralized or non pluralized class names.
The default is pluralized

If JSON:API types should be rendered as lower cased or original class names.
The default is lower cased

If page information of a PagedModel should be rendered automatically as

JSON:API meta object.
The default is true

If a specific Java class should be rendered with a specific JSON:API type.

A lambda expression to add additional configuration to the
Jackson ObjectMapper used for serialization.

Experimental: Render Spring HATEOAS affordances as JSON:API link meta.



Configuration Example

@Bean
JsonApiConfiguration jsonApiConfiguration() {
return new JsonApiConfiguration()
.withJsonApiVersionRendered(true)
.withPluralizedTypeRendered(false)
.withLowerCasedTypeRendered(false)
withTypeForClass(MyMovie.class, "my-movies")
withObjectMapperCustomizer(
objectMapper -> objectMapper.configure(
SerializationFeature.WRITE_DATES AS TIMESTAMPS,
true));



Error Handling

To create JSON:API compliant error messages, you can
use JsonApiErrors and JsonApiError

return ResponseEntity.badRequest().body(
JsonApiErrors.create().withError(

JsonApiError.create()
withAboutLink("http://movie-db.com/problem")
withTitle("Movie-based problem")
WwithStatus(HttpStatus.BAD REQUEST.toString())
withDetail("This is a test case")));



Error Example
{

"errors": [

{
"links": {
"about": "http://movie-db.com/problem"

b
"status": "400 BAD_REQUEST",

"title": "Movie-based problem",
"detail": "This is a test case"




Conclusion

With JSON:API for Spring HATEOAS,

it is very easy to support JSON:API (serialization
+ deserialization) out of the box. With the
builder, special JSON:API features like
relationships and sparse fieldsets are supported
as well.
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Links

= Spring HATEOAS:
https://github.com/spring-projects/spring-hateoas

= JSON:API for Spring HATEOAS:
https://github.com/toedter/spring-hateoas-jsonapi
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License

= This work is licensed under a Creative Commons
Attribution 4.0 International License.

See http://creativecommons.org/licenses/by/4.0/
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