
Growing GitLab DevSecOps
platform to +40k users

Krzysztof Walkiewicz

Who am I?
Krzysztof Walkiewicz

� DevOps engineer

� Product owner of DevSecOps platforms @ Roche

🎤 Today I’ll be your storyteller

What is this talk about?
This is a story about:

a great team

open/inner source

passion for the technology and the fun factor

empowerment and trust

confronting status quo

DevOps culture

Current state

User base growth
What counts is a developer head count 🙂

Time travel to 2019 and the need for change

We had - and still have many tools:

Bitbucket, Github, SVN, ADO, Jenkins, Bamboo, Jira…

All of these as multiple instances (on-prem and the cloud) across the
organisation.

"Guarded" behind access requests (which might have been easily rejected if
you didn’t have good enough business case).

With different (sometimes lacking) cababilities, often limited by the license.

How did the developer experience look like @ Roche back then in the context
of tools used in software development?

The need for change (continued)

Many support teams maintained different part of the stack - but none of
them had holistic view.

Many silos around them.

There was no coherent strategy for inner source/reusability inside the
organisation, with no insight into global codebase.

As a result different teams were re-inventing the wheel over and over again.

Holding out for a hero 🙂

The inspiration came actually from our hosts - Siemens �

It was totally bottom-up initiative.

Without typical approval-requirements-vendor-

assessment-funding-phase (or in whatever order this

usually happens).

The project was actually never announced - it grown

organically.

Access to openstack deployment was a turning point ("I

can handle the network!" - unbounded creativity).

"Business done this because IT failed".

On March 14, 2019 one individual decided to change the reality and made an initial commit. Slowly, over time,
strong team of enthusiasts formed around the inititive of having modern DevSecOps platform that would
support DevOps and Inner Source.

What were the success factors of introducting GitLab
@ Roche?

Fails to deliver a value.

Are not delivered on time.

Exceeds budget.

Bootstrapping new platform inside a big organization it’s like running a

startup - (hint: it’s rather risky).

So what happened at Roche? Let me answer this question.

Given that many of IT projects:

Success factors
Great team

Small - size matters.

Skilled, ambitious, motivated.

Empowered (ownership of the whole

solution: provision, maintainance,

con�guration, monitoring, support).

Following good engineering practices:

Code reviews.

Infrastructure as code.

Automated tests, validation as code.

A lot of documentation.

Postmortems.

Success factors (continues)
Good engineers to facilitators ratio 🙂

| Role | Primary tool |

|----------------------+--------------|

| DevOps engineer | Vim |

| DevOps engineer | Vim |

| DevOps engineer | VS code |

| DevOps engineer | VS code |

| DevOps engineer | Emacs |

| DevOps engineer/PO | Emacs |

| Validation lead | Gdoc |

| Manager | Gmail |

Success factors (continues)
GitLab is simply a great product ❤

With complete set of features (even on the free version).

With server/cloud installtion options.

Helm charts available.

Great documentation and a handbook!

Developed in the open (saved us many times).

Success factors (continues)
Google Cloud - delivers quality products and an API for them,
enables hyper-automation

GKE

CloudSQL

Cloud storage

Monitoring

All these great products helped us build upon and quickly deliver value to the end users.

Success factors (continues)
Dog-fooding: platform deployed from within GitLab CI/CD
pipeline (yes, inception)

Success factors (continues)
Support to the users delivered via community driven forum

Acts as a knowledge base.

Users can search for similar problems.

More experienced platform users (from outside of

core team) started sharing knowledge.

We may refer to the old answers (DRY).

Success factors (continues)
Courageous and visionary leaders

"There were people with the vision, that saw a potential and took the pressure".

With "It is easier to ask for forgiveness than to ask for permission" approach.

Not afraid of confornting Status quo.

Lessons learned (people aspects)
It’s good to be conservative when it comes to specifying platform limits. Example: 50MB max push size is

ok. Saying de�nitive "no" is also ok - if you can justify it.

Be transparent.

Gather like-minded people around if you try to challenge status quo in the organisation.

Maintain fun factor within the team.

People come and go - that’s ok - plan for this.

Iterate fast, gather users feedback - it’s really important.

Lessons learned (technical aspects)
There are no such things as in�nite resources (avoid no limits settings).

Complex platforms are highly dynamic - Panta Rhei.

Pin all the dependencies - there is enough randomness in the Universe.

Every codebase is aging quickly and need mainenance. It’s not an asset, it’s liability.

Laverage scalability features of Kubernetes.

Accurate monitoring is essential (focus on golden signals: latency, traf�c, errors, saturation).

Have an eye at Queue wait time of CI/CD jobs in the runners �eet.

Read deprecations and release notes carefully.

If you deploy to Kubernetes - make sure you have at least 2 CKA’s in the team 😉

Uptime of 99.9% is doable. Everything above is rather dif�cult and expensive.

Thank you!

1. Images on page 1 and 8: unsplash.com

2. Team complexity growth image on page 11: https://getlighthouse.com/blog/developing-leaders-team-grows-big/

https://getlighthouse.com/blog/developing-leaders-team-grows-big/

